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Abstract. The modified Green function appropriate for solution of interior boundary value
problems of Laplace’s equation in a three-dimensional rectangular parallelepiped, subject to
periodic boundary conditions, is developed. This allows the determination of the potential due
to an arbitrary continuous charge distribution and its periodic replications in three dimensions.
Summation of the eigenfunction expansion by application of the Poisson–Jacobi formula gives a
Ewald sum, while application of the Poisson summation formula results in a two-dimensional
potential that is perturbed by a rapidly converging Fourier cosine series involving K0 Bessel
functions. The latter constitutes a generalization of formulae described by Lekner. Numerical
results show that the K0 expansion is more rapidly convergent than the Ewald sum, and could
therefore substantially reduce the computational effort involved in the molecular simulation of
ionic and polar fluids. The Green function is also shown to be related to the asymptotic behaviour
of lattice sums for the screened Coulomb potential, in the limit as the screening constant tends to
zero.

1. Introduction

The evaluation of lattice sums has been of theoretical and practical interest for many years.
The mathematical difficulties inherent in this problem originate in the slow decay of the
Coulomb potential with distance; as a result, the series that arise are conditionally convergent
and are not amenable to treatment by purely numerical convergence-acceleration algorithms.
The main focus in previous treatments has therefore been on the construction of analytical
transformations.

The development of most of these transformations follows a three-stage pattern:
(i) selection of an integral representation for the reciprocal distance (or free-space Green
function), 1/4πr; (ii) interchange of the order of summation and integration; and
(iii) acceleration of the convergence of the series of integrands. Thus, the well known Ewald
(1921) method uses a Gaussian integral, and the van der Hoff–Benson (1953) method and
its more recent generations (Lekner 1991, 1998, Grønbech-Jensen et al 1997) are based on a
gamma-function integral. In both cases the convergence acceleration is realized by application
of the Poisson–Jacobi formula for transformation of theta functions (Bellman 1961, p 10),
resulting in series of complementary error functions orK0 Bessel functions, respectively. This
result and other properties of theta functions have proved to be of crucial importance in several
approaches to lattice summation. For instance, Chaba and Pathria (1974, 1976a, b) integrated
the Poisson–Jacobi formula with respect to the theta-function argument to obtain lattice sums
for screened Coulomb potentials. Alternatively, the integrals arising in the first two steps of
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the above-mentioned general scheme can be evaluated as Mellin transforms of theta functions,
providing formulae relating lattice sums to the Riemann zeta function and its multidimensional
generalizations (Glasser 1973a, b, Zucker, 1974, 1975, 1976). The connection between these
zeta functions and lattice sums has been known for many years (Lennard-Jones and Ingham
1925, Topping 1927); an interesting discussion is given by Terras (1985, pp 76–82).

For lattices periodic in two dimensions, 1/r is more conveniently represented as an integral
involving either the J0 orK0 Bessel functions of arguments that depend on the periodic lattice
coordinates. In the first case, summation of the J0 functions over the lattice can then be
achieved by reduction to Schlömilch series, as demonstrated by Hautot (1974) and Miller
(1995). The sum of K0 functions arising from the second representation converges rapidly,
since these functions decrease exponentially with increasing argument. But this method fails
for evaluating the self-energy of an ion in a lattice, because every term in the series becomes
singular as the field and source points approach each other. In contrast, the singularity of
the J0-representation is localized in only one term of the transformed series. Both of these
approaches have been used in lattice models for adsorbed monolayers (Macdonald and Barlow
1966, Marshall 1986, Marshall and Conway 1992a, b).

Although the earliest work on lattice summation originated from the problem of calculating
the cohesive energy of ionic crystals, contemporary interest in this subject is mainly focused
on the computer simulation of ionic and polar fluids by the molecular dynamics (MD) or
Monte Carlo (MC) methods. Long-range columbic forces acting on the particles in each
deterministically or stochastically generated configuration are most commonly estimated by
imposing periodic boundary conditions and applying Ewald’s method, assuming that the
number of particles and the volume of the enclosure are sufficiently large to avoid spurious
periodicity effects. Many MC/MD simulation techniques of water and aqueous electrolyte
solutions have been described (Chialvo and Cummings 1999).

These simulation techniques have also been applied to gas hydrate crystals (Tse et al 1984,
Rodger 1990, 1991, Kvamme and Førrisdahl 1996), which are crystalline hydrogen-bonded
networks of water molecules that form polyhedral cavities large enough to accommodate small
molecules of gases such as carbon dioxide, methane and other light hydrocarbons (Sloan 1998).
Methane hydrates occur widely in nature (in particular, on the ocean floor), and are of great
importance not only in relation to environmental issues such as global warming (Haq 1998),
but also as a potential energy resource (Kvenvolden 1988).

The difficulty in developing an accurate molecular model for gas hydrates appears to
reside in ensuring the mutual consistency of the representations of the short- and long-range
contributions to the potential. Representing the polarity of the water molecules by a finite
quadrupole (Berendsen et al 1987, Stillinger and Rahman 1974) and the short-range potential
by a Lennard-Jones function is inconsistent: on the one hand, the finite-quadrupole model is
a poor representation of the molecular charge distribution at close quarters, and on the other,
the Lennard-Jones function implies a spherically-symmetric charge distribution, inherently
incompatible with polarity. The resolution of this impasse clearly requires determination of
the molecular electronic charge distribution subject not only to the nuclear potentials, but also to
the potential resulting from three-dimensional replication of the molecular charge distribution.

Determination of the potential due to an arbitrary periodic charge distribution is of
interest primarily in connection with solid-state electronic structure calculations. Crystal wave
functions are solutions of an eigenvalue integral equation, in which the kernel is the product
of the lattice potential and a periodic Green function for Helmholtz’s equation (Jones and
March 1973, pp 58–62). While use of the Helmholtz Green function in this context is very
well known, a search of the INSPEC database and Science Citation Index since 1970 reveals
that surprisingly little use has been made of the Poisson Green function to determine the
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electrostatic component of the lattice potential; works by Schadler (1992), Oh et al (1992) and
Zhang et al (1994) are notable exceptions. In contrast, this electrostatic problem is generally
solved by multipole expansion within spheres about the atomic nuclei, and construction of a
Fourier series representing the potential in the interstitial regions (Weinert 1981, Herzig 1985,
Krasovskii et al 1999).

The purpose of the present paper is to describe an alternative approach to the construction
of rapidly convergent expressions for the periodic Green function of Poisson’s equation. The
starting point is the plane-wave expansion, which can be transformed into an Ewald sum (by
a considerably more direct route than that taken by Oh et al 1992) or into a more rapidly
converging series of K0 Bessel functions. These expressions are obtained by application of
the Poisson summation formula (PSF), as recently described for two-dimensional modified
Green functions (Marshall 1998a, 1999) and other more general Fourier series with coefficient
functions defined by various types of power-series expansion (Marshall 1998b). Use of the
Green function avoids ambiguous numerical values resulting from conditional convergence
of Coulomb potential series, and reduces the determination of the potential to numerical
quadrature: resolution of the charge density into multipoles is not necessary.

2. Overview

In the next section, the derivation of the Green function is given. Following this, the results
required for the development of rapidly converging representations of the Green function are
collected, and applied to the summation of Fourier series representing the periodic Green
functions in one, two and three dimensions. The corresponding representation of the Green
function as a Ewald sum is then derived. In section 4, numerical results comparing the speed
of convergence of these formulae are presented. In section 5, the determination of lattice sums
by application of the Green function and by direct summation of the Coulomb potential is
compared. Finally, in section 6, the relation between the present work and that of Lekner
(1991) is clarified with particular reference to the calculation of the electrostatic potential
energy of the unit cell.

3. Analysis

3.1. Relation between periodic potential and charge density

A crystal lattice can be characterized in terms of a charge density ρ(x, y, z) (including ‘free’
and ‘bound’ charges) that is spatially periodic

ρ(x, y, z) = ρ(x + a, y, z) = ρ(x, y + b, z) = ρ(x, y, z + c) (1)

and associated with a periodic electrical potential V (x, y, z):

V (x, y, z) = V (x + a, y, z)
∂V

∂x
(x, y, z) = ∂V

∂x
(x + a, y, z) (2a)

V (x, y, z) = V (x, y + b, z)
∂V

∂y
(x, y, z) = ∂V

∂y
(x, y + b, z) (2b)

V (x, y, z) = V (x, y, z + c)
∂V

∂z
(x, y, z) = ∂V

∂z
(x, y, z + c). (2c)

Lattice potentials can be determined by summing neutral combinations of the single-charge
potentials over the entire lattice, but since these series are conditionally convergent, the
numerical values of the lattice sums so obtained depend on the manner in which the positive
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and negative terms are combined (Whittaker and Watson 1944, p 25). These difficulties can be
avoided by first noting that, if the axes defining the unit cell are orthogonal, the charge density
can be resolved into Fourier components according to

ρ =
∞∑

n=−∞

∞∑
m=−∞

∞∑
k=−∞

Anmke
i
[

2nπx
a

+ 2mπy
b

+ 2kπz
c

]
(3a)

Anmk = 1

abc

∫ a

0

∫ b

0

∫ c

0
ρ(ξ, η, ζ ) e

−i
[

2nπx
a

+ 2mπy
b

+ 2kπz
c

]
dξ dη dζ. (3b)

The zeroth Fourier component of ρ vanishes for an electrically neutral unit cell:

A000 = 1

abc

∫ a

0

∫ b

0

∫ c

0
ρ(ξ, η, ζ ) dξ dη dζ = 0. (4)

If ρ is known, the potential can be determined by solution of Poisson’s equation

−∇2V = 4πρ (5)

subject to the boundary conditions expressed by equations (2a)–(2c). If the potential is
expanded in the same eigenfunctions as the charge density, the term with k = m = n = 0
is found to be a constant, and the remaining terms can be determined by making use of the
orthogonality of the eigenfunctions. The potential is thus found to be

V = 4π
∫ a

0

∫ b

0

∫ c

0
ρ(ξ, η, ζ )P222(x, y, z | ξ, η, ζ ) dξ dη dζ (6)

where

P222(x, y, z | ξ, η, ζ )≡ 1

abc

∑′

k,m,n

1

(2nπ/a)2 +(2mπ/b)2 +(2kπ/c)2
e

i
[

2nπ(x−ξ)
a

+ 2mπ(y−η)
b

+ 2kπ(z−ζ )
c

]

is the periodic modified Green function for Poisson’s equation within the parallelepiped and
the primed summation includes all integral values of k, m and n except k = m = n = 0. The
three subscripts indicate the number of boundaries in each coordinate. Taking into account the
exclusion of the zero eigenvalue, the defining equation is

−∇2P222(x, y, z | ξ, η, ζ ) = δ(x − ξ)δ(y − η)δ(z− ζ )− 1

abc
(7)

where δ is the Dirac delta function. This shows that P222 can be interpreted physically as the
potential at the field point (x, y, z), due to a unit point charge at the source point (ξ, η, ζ ) and
the same quantity of charge of opposite sign distributed uniformly throughout the enclosure.
(In section 6, this interpretation is confirmed by deriving the same Fourier series from a
lattice sum for the screened Coulomb potential.) The solution for V given by equation (6) is
finite throughout the enclosure, provided that the source points are different and the neutrality
condition expressed by equation (4) is satisfied. It is also valid for both continuous and discrete
charge distributions: for a discrete charge distribution, the potential is given by a sum of values
of P222, over the coordinates of the source points, whereas for a continuous charge distribution
(such as that obtained from a quantum-chemical calculation) determination of the potential
involves a numerical integration of P222 times the charge density. The problem of developing
a computationally useful expression for the eigenfunction expansion is considered in the next
six sections.
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3.2. Integral representation of the free-space Green function

The Green function for any finite three-dimensional region is the total potential due to a point
charge and its interaction with the boundaries. For Dirichlet problems, in which the potential
is constrained to vanish on the boundaries, this total potential can be represented in terms of
a series of image potentials, but for Neumann problems and the periodic boundary conditions
that are of interest here, the image potential series do not converge. The convergence of the
eigenfunction expansion for the periodic Green function can easily be established, and the PSF
can be used to obtain a computationally efficient formula. The required Fourier transforms are
best introduced by deriving the well known formula for the free-space Green function in three
dimensions. This is the solution of

−∇2G000 = δ(x − ξ)δ(y − η)δ(z− ζ ). (8)

A Fourier integral representation of G000 is derived as follows. Assuming that

G000 =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
A(λ,µ, ν)ei(λx+µy+νz) dλ dµ dν (9)

and substituting the appropriate integral representations for the delta functions in each
coordinate into equation (8), there results (cf Morse and Feshbach 1953, p 1255)

G000 = 1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

ei[λ(x−ξ)+µ(y−η)+ν(z−ζ )]

λ2 + µ2 + ν2
dλ dµ dν

= 1

π3

∫ ∞

0

∫ ∞

0

∫ ∞

0

cos λ(x − ξ) cosµ(y − η) cos ν(z− ζ )
λ2 + µ2 + ν2

dλ dµ dν. (10)

This integral is best evaluated by transformation to polar coordinates, but since rectangular
coordinates are of more interest in the present context, it is more conveniently evaluated by
use of the following tabulated Fourier cosine transforms:∫ ∞

0

cosXY

X2 + A2
dX = π

2A
e−AY (11)

(Erdélyi et al 1954, p 8, formula (11));∫ ∞

0

e−B
√
x2+A2

√
X2 + A2

cosXY dX = K0[A
√
B2 + Y 2] (12)

(Erdélyi et al 1954, p 17, formula (27)) and∫ ∞

0
K0(AX) cosXY dX = π

2
√
A2 + Y 2

(13)

(Gray et al 1931, p 161; cf Erdélyi et al 1954, p 49, formula (40)). Applying these results
successively to the integrals over the three coordinates, the required Fourier integral is found
to be

G000 = 1

π3

∫ ∞

0

∫ ∞

0
cosµ(y − η) cos ν(z− ζ )πe−|x−ξ |

√
µ2+ν2

2
√
µ2 + ν2

dµ dν

= 1

2π2

∫ ∞

0
cos ν(z− ζ )K0[ν

√
(x − ξ)2 + (y − η)2] dν

= 1

4π
√
(x − ξ)2 + (y − η)2 + (z− ζ )2

. (14)
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3.3. One-dimensional periodic modified Green function

The expansion of the periodic modified Green’s function P2(x | ξ) for the line segment
{x | 0 � x � a} in the eigenfunctions

φn(x) = eiλnx λn = 2nπ

a
n = 0,±1,±2, . . . (15)

‖φn(x)‖2 =
∫ a

0
φn(x)φ

∗
n(x) dx =

∫ a

0
ei 2nπx

a e−i 2nπx
a dx = a (16)

is equal to the sum of the terms in equation (6) for which two indices are equal to zero:

P2(x | ξ) =
∑′

n

φn(x)φ
∗
n(ξ)

‖φn(x)‖2λ2
n

= 2

a

∞∑
n=1

cos(2nπ/a)(x − ξ)
(2nπ/a)2

. (17)

This series can be summed by application of the result
∞∑
k=1

cos kX

k2
= π2

6
− π |X|

2
+
X2

4
(18)

(Gradshteyn and Ryzhik 1994, p 46), with the identification X = 2π(x − ξ)/a:

P2(x | ξ) = 1

2a

[
(x − ξ)2 − a|x − ξ | +

a2

6

]
. (19)

This function is continuous at x = ξ , and its derivative

∂P2(x | ξ)
∂x

= 1

2a
[2(x − ξ)± a] (20)

(where the ‘+’ and ‘−’ refer respectively to x < ξ and x > ξ ) satisfies the ‘jump’ condition

lim
x↓ξ

∂P2(x | ξ)
∂x

− lim
x↑ξ

∂P2(x | ξ)
∂x

= −a
2a

− a

2a
= −1 (21)

which is required of one-dimensional Green’s functions (Barton 1989, p 48). It can further be
verified that the periodic boundary conditions are satisfied by equation (19):

P2(0 | ξ) = 1

2a

[
ξ 2 − aξ +

a2

6

]

P2(a | ξ) = 1

2a

[
(a − ξ)2 − a(a − ξ) +

a2

6

]
= 1

2a

[
ξ 2 − aξ +

a2

6

]
. (22)

This result can also be used to solve the corresponding Dirichlet and Neumann problems for
the line segment {x | 0 � x � A}, where A = a/2 (Stakgold 1967, vol 1, p 86). Thus,
addition of the forms of equation (17) appropriate for sources at the points ξ and −ξ gives

P2(x | ξ) + P2(x | −ξ) = 4

a

∞∑
n=1

cos(2nπx/a) cos(2nπξ/a)

(2nπ/a)2

= 2

A

∞∑
n=1

cos(nπx/A) cos(nπξ/A)

(nπ/A)2
(23)

and assuming (without loss of generality) that x < a/2, it follows from equation (19) that

P2(x | ξ) + P2(x | −ξ) = N2(x | ξ) = x2 + ξ 2

2A
− x +

A

3
(x > ξ)

= x2 + ξ 2

2A
− ξ +

A

3
(x < ξ). (24)
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The (Dirichlet) Green function can be similarly obtained, either as a Fourier sine series

P2(x | ξ)− P2(x | −ξ) = 4

a

∞∑
n=1

sin(2nπx/a) sin(2nπξ/a)

(2nπ/a)2
(25)

or as a piecewise linear function of x:

P2(x | ξ)− P2(x | −ξ) = G2(x | ξ) = 1

A
ξ(A− x) (x > ξ)

= 1

A
x(A− ξ) (x < ξ). (26)

3.4. Two-dimensional periodic modified Green function

The analogue of equation (17) for the periodic Green function P22 defined for the rectangle
{(x, y) | 0 � x � a, 0 � y � b} is equal to the sum of terms in equation (6), wherein at most
two indices are zero. This can also be obtained by expansion in the eigenfunctions

φnm(x, y) = ei(λnx+µmy) λn = 2nπ

a
µn = 2mπ

b
m, n = 0,±1,±2, . . . (27)

‖φnm(x, y)‖2 =
∫ a

0

∫ b

0
φn(x, y)φ

∗
n(x, y) dx dy = ab (28)

as

P22(x, y | ξ, η) =
∑′

n,m

φnm(x, y)φ
∗
nm(ξ, η)

‖φnm(x, y)‖2(λ2
n + µ2

m)
. (29)

After combining the complex exponentials and excluding the term with n = m = 0,

P22(x, y | ξ, η) = 4

ab

∞∑
n=0

∞∑
m=0

γnm
cos[2nπ(x − ξ)/a] cos[2mπ(y − η)/b]

(2nπ/a)2 + (2mπ/b)2
(30)

where γ00 = 0, γ0m = γn0 = 1/2, and γnm = 1 for n,m > 0. Suppressing the arbitrary
constants that can be added to this expression without affecting the satisfaction of the periodic
boundary conditions, two equivalent forms can be derived:

P22(x, y | ξ, η) = 1

a
P2(y | η) +

2

ab

∞∑
n=1

cos
2nπ(x − ξ)

a

∞∑
m=−∞

cos[2mπ(y − η)/b]

(2nπ/a)2 + (2mπ/b)2
(31a)

P22(x, y | ξ, η) = 1

b
P2(x | ξ) +

2

ab

∞∑
m=1

cos
2mπ(y − η)

b

∞∑
n=−∞

cos[2nπ(x − ξ)/a]

(2nπ/a)2 + (2mπ/b)2
. (31b)

As shown by Marshall (1999), a rapidly convergent form of the double series can be obtained
by application of the PSF in the form

∞∑
m=−∞

f (m) cospm =
∞∑

M=−∞

∫ ∞

−∞
f (t) cos(2Mπ + p)t dt (32)

where p is a real parameter. Identifying f and p as

f (t) ≡ 1

(2nπ/a)2 + (2π/b)2
p ≡ 2π(y − η)

b
(33)

and making use of equation (11) produces
∞∑

m=−∞

cos[2mπ(y − η)/b]

(2nπ/a)2 + (2mπ/b)2
= ab

4πn

∞∑
M=−∞

e− 2nπ
a

|Mb+y−η|. (34)
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Therefore

Hab(x − ξ, y − η) ≡
∞∑
n=1

cos
2nπ(x − ξ)

a

∞∑
m=−∞

cos[2mπ(y − η)/b]

(2nπ/a)2 + (2mπ/b)2

= ab

4π

∞∑
M=−∞

[ ∞∑
n=1

e− 2nπ |Mb+y−η|
a

n
cos

2nπ(x − ξ)
a

]

= − ab

8π

∞∑
M=−∞

ln

[
1 − 2e− 2π |Mb+y−η|

a cos
2π(x − ξ)

a
+ e− 4π |Mb+y−η|

a

]
(35a)

where the last step follows by identifying the sum overn as the real part of a complex logarithmic
power series. Precisely similar transformations can obviously be applied to the series in the
second line of equation (31):

Hba(y − η, x − ξ) ≡
∞∑
m=1

cos
2mπ(y − η)

b

∞∑
n=−∞

cos[2nπ(x − ξ)/a]

(2nπ/a)2 + (2mπ/b)2

= − ab

8π

∞∑
N=−∞

ln

[
1 − 2e

2π |Na+x−ξ |
b cos

2π(y − η)
b

+ e
4π |Na+x−ξ |

b

]
. (35b)

An alternative form of the relation between the functions Hab and Hba can be established by
equating the two equivalent rearrangements of the double series

∞∑
n=1

∞∑
m=1

cos(2nπX/a) cos(2mπY/b)

(2nπ/a)2 + (2mπ/b)2
= 1

2

[
Hab(X, Y )−

∞∑
n=1

cos(2nπX/a)

(2nπ/a)2

]

= 1

2

[
Hba(Y,X)−

∞∑
m=1

cos(2mπY/b)

(2mπ/b)2

]
. (36)

Transposing terms, and making use of equation (18), it follows that

Hab(X, Y )−Hba(Y,X) =
∞∑
n=1

cos(2nπX/a)

(2nπ/a)2
−

∞∑
m=1

cos(2mπY/b)

(2mπ/b)2

= 1

4

[(
X − a

2

)2
−

(
Y − b

2

)2

+
b2 − a2

12

]
. (37)

Hab converges rapidly if b � a and Hba converges rapidly for a � b. Therefore, if the
value of the more slowly converging series is needed, equation (37) can be used to express
this in terms of the more rapidly converging series, thereby substantially reducing the amount
of computation. It is of particular interest to consider the limiting behaviour of the function
Hab as its arguments X and Y tend to zero, or equivalently, as the dimensions a and b of the
rectangle become infinite. In this limit, the series in equation (35a) will be dominated by the
term for which M = 0. Expanding the exponentials and the cosine function appearing in the
argument of this term to second order produces the approximation

1 − 2e− 2π |y−η|
a cos

2π(x − ξ)
a

+ e− 4π |y−η|
a =

(
2π

a

)2

[(x − ξ)2 + (−η)2] + · · · (38)

− 1

4π
ln

[
1 − 2e− 2π |y−η|

a cos
2π(x − ξ)

a
+ e− 4π |y−η|

a

]
= − 1

2π
ln

√
(x − ξ)2 + (y − η)2 + · · · .

(39)
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Thus, the logarithmic function correctly reduces to a line-source potential in this limit.
Proceeding similarly for the corresponding term with N = 0 in the function Hba , it can
be concluded that

P22(x, y | ξ, η) = 1

a
P2(y | η) +

2

ab
Hab(x − ξ, y − η) (40a)

and

P22(x, y | ξ, η) = 1

b
P2(x | ξ) +

2

ab
Hba(y − η, x − ξ) (40b)

represent the two-dimensional periodic Green’s function, and reduce to

G00 = − 1

2π
ln

√
(x − ξ)2 + (y − η)2 (41)

in the limit as a and b tend to infinity and the field and source point remain fixed. Finally,
the relation between P22 and the Neumann function for the rectangle {(x, y) | 0 � x � A,
0 � y � B}, where A = a/2 and B = b/2, can be derived. From equation (25),

P22(x, y | ξ, η) + P22(x, y | ξ,−η) + P22(x, y | −ξ, η) + P22(x, y | −ξ,−η)
= 1

A
N2(y | η) +

1

2AB
{FAB(x − ξ, y − η)

+FAB(x − ξ, y + η) + FAB(x + ξ, y − η) + FAB(x + ξ, y + η)} (42)

where

FAB(X, Y ) = −AB
2π

∞∑
M=−∞

ln

[
1 − 2e− π

A
|2MB+Y | cos

πX

A
+ e− 2π

A
|2MB+Y |

]
.

This agrees, to within a constant, with an earlier result (Marshall 1999).

3.5. Three-dimensional periodic modified Green function

Extending equation (30), the eigenfunction expansion of the three-dimensional periodic Green
function is

P222(x, y, z | ξ, η, ζ ) = 8

abc

∞∑
n=0

∞∑
m=0

∞∑
k=0

γnmk

×cos[2nπ(x − ξ)/a] cos[2mπ(y − η)/b] cos[2kπ(z− ζ )/c]
(2kπ/c)2 + (2mπ/b)2 + (2nπ/a)2

(43)

where γ000 = 0, γm00 = γ0m0 = γ00k = 1/4, γ0mk = γn0k = γnm0 = 1/2 and γnmk = 1 for
n, m and k > 0. However, this expression is rather cumbersome; it is much more convenient
to construct the three-dimensional Green function by separating the terms for which k is zero
from those for which k is nonzero. The sum of the first group (excluding the n = m = 0 term)
is the two-dimensional Green function considered in the previous section. The second group
contains terms with all positive values of k, and positive and zero values of bothm and n; since
the summands are even functions of m and n, these indices can be considered to assume all
integral values. Thus, to within an additive constant,

P222(x, y, z | ξ, η, ζ ) = 1

c
P22(x, y | ξ, η) +

2

abc

∞∑
k=1

cos
2kπ(z− ζ )

c

×
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cos[2mπ(y − η)/b] cos[2nπ(x − ξ)/a]

(2kπ/c)2 + (2mπ/b)2 + (2nπ/a)2

}
. (44)
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Application of the PSF to the sum over n in the curly brackets gives
∞∑

n=−∞

cos[2nπ(x − ξ)/a]

(2kπ/c)2 + (2mπ/b)2 + (2nπ/a)2
=
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dt
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c )
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b )
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(45)

where the integrals have been evaluated by application of equation (11). The Fourier summation
over m can be carried out by a second application of the PSF, in which the Fourier integrals
are evaluated by equation (12):

∞∑
m=−∞

cos
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2
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b )
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}
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]
. (46)

The three-dimensional periodic Green function is therefore

P222(x, y, z | ξ, η, ζ ) = 1

c
P22(x, y | ξ, η)

+
1

πc

∞∑
k=1
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∞∑
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K0

[
2kπ

c

√
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× cos
2kπ(z− ζ )

c
. (47a)

The limiting behaviour of this result is best examined in two stages. As a and b tend to
infinity, all the K0 functions vanish except for those corresponding to N = M = 0. Since the
two-dimensional Green function approaches the line-source potential,

P002(x, y, z | ξ, η, ζ ) ≡ lim
a,b→∞

P222(x, y, z | ξ, η, ζ )

= − 1

2πc
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∞∑
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]
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c
(48)

which, apart from a trivial difference in nomenclature, is the periodic Green function obtained
by Linton (1999) for the region bounded by two parallel planes. As c tends to infinity, the
line source term vanishes, and the sum of K0 functions becomes an integral, which can be
evaluated by application of equation (13):
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1
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c

√
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The modified Green function therefore correctly approaches the free-space Green function as
the dimensions of the enclosure approach infinity, or equivalently, as the field point and the
source point approach each other.

3.6. Ewald representation of the periodic Green function

The coulombic lattice sums that arise in computer simulation of polar fluids are almost
exclusively evaluated by applying the Ewald transformation to charge distributions that are
represented as neutral collections of point charges. To compare the performance of Ewald
summation and the present results, it is necessary to apply the Ewald method to the evaluation
of the periodic Green function. This can readily be achieved by a generalization of the
derivation given by Leibfried (1955), which is based on an integral representation of the
Fourier coefficients of the potential rather than the potential itself:

P222(x, y, z | ξ, η, ζ ) = 1
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Next, it is observed that the sum of Gaussian functions over all values of k, m and n can be
factorized:

∞∑
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}
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The convergence of each of these three groups of terms for small values of t can be accelerated
by applying the Poisson–Jacobi formula (Bellman 1961, p 10):

∞∑
k=−∞

e− k2π2

u
+2kπ iX =

√
u

π

∞∑
K=−∞

e−(X+K)2u (52)

where X and u are real parameters. Thus, for example, with X = (z − ζ )/c and u = c2/4t ,
the sum over k becomes
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and proceeding similarly for the other two sums gives
∞∑

k=−∞
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The corresponding form of the primed lattice sum appearing in equation (50) is obtained from
equation (54) by subtracting 1 from both sides. Since the right-hand side of equation (54)
converges rapidly for small t , and the left-hand side converges rapidly for large t , a rapidly
converging expression for P222 can be obtained by integrating these respective forms over the
two subintervals [0, β] and [β,∞), where β is positive. Thus,
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(55)

where the coefficientγnmk is as defined following equation (43). The above derivation illustrates
why the Ewald method works best for lattices that are periodic in three dimensions: the change
of variable that allows the small-t integral in equation (55) to be reducible to a complementary
error function is possible only because of the 3/2 power of t in the denominator, which would
not appear if the integrand contained only one or two transformed theta functions.

3.7. Self-potential

The calculation of lattice sums requires not only the potential experienced by each ion due to
the periodic repetitions of all the other ions, but also the potential due to the periodic repetitions
of itself. This ‘self-potential’ is the limit of the nonsingular part of the Green function as the
field and source points approach each other (Leibfried 1955, p 135, equation (26.11)):

Q222(a, b, c) = lim
(x,y,z)→(ξ,η,ζ )

[P222(x, y, z | ξ, η, ζ )−G000(x, y, z | ξ, η, ζ )] (56)

and is evaluated much more conveniently in the Ewald representation of the Green function
than from the K0 Bessel function expansion. This is because in the former, the singularity is
localized in the error-function term with N = M = K = 0, while in the latter, the singularity
is represented by the combined effect of infinitely many divergentK0 functions. By use of the
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approximation erfc(z) � 1 − 2z/π1/2, the Ewald representation of the self-potentialQ222 can
be shown to be:

Q222(a, b, c) = − 1

4π
√
πβ

− β
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+

1

4π

∑′

K,M,N

erfc[
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For semi-infinite regions with rectangular boundaries, Linton (1999) has developed alternatives
to Bessel function expansions that converge rapidly when the distance between the field and
source points has a small but finite value. His results were obtained by considering the limiting
behaviour of the corresponding three-dimensional transient temperature fields, as time tends to
infinity. Although Linton’s general approach could, in principle, be appropriately modified to
produce corresponding representations forP222, it turns out that the counterpart of equation (56)
for theK0 expansion of the Green function can be obtained much more directly by modifying
the derivation of the Ewald sum given in the previous section. Substituting the Gaussian-
integral representation of K0, viz.,

K0(λR) = 1

2

∫ ∞
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t
e−λ2t− R2
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(Watson 1944, p 183) into the double sum of modified Bessel functions results in the integral
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The Poisson–Jacobi formula can now be used to transform the summation over k, as in
equation (53), and the integration divided into subintervals [0, β] and [β,∞) as before. Thus:
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The first part of the first integral results in the same series of error functions that appears in
equation (55), and the remaining terms are all readily expressible as exponential integrals:∫ β
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The final integral on the right-hand side of equation (59) results in an exponential series that
differs from its counterpart in equation (55) only in the limits of the summation over k. The
alternative representation of the K0 series is therefore
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As a result of the above transformations, the singularity shown by the K0 series as the field
and source points approach each other has been isolated into the error function term with
N = M = K = 0, and the exponential integral withN = M = 0. However, noting the power
series expansion of the exponential integral,

E1(z) = −γ − ln z−
∞∑
n=1

(−z)n
nn!

(63)

(Abramowitz and Stegun 1964, p 229), it can be seen that the latter singularity will be cancelled
by the line-source potential that is approached by P22 in this limit:
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Since the limit of the singular complementary error function term is evaluated exactly as in
equation (57), the required alternative expression for the self-potential is
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The mutual consistency of equations (65) and (57) can be established by identifying the double
sum of E1 functions as part of the Ewald expansion of P22, viz.
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which can readily be derived by adapting the method used to obtain equation (55). Thus,
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It can easily be verified that equation (55) results if equations (62) and (66b) are substituted
into equation (47a).

3.8. Electrostatic energy and Madelung constant

With expressions in hand for both P222 and Q222, the general expression for the electrostatic
energy E of a neutral unit cell consisting of charges qi at points (ξi, ηi, ζi) follows (Leibfried
1955, p 136, equation (27.4)):

E = 1

2
4π

[ ∑
i �=j
qiqjP222(ξi, ηi, ζi | ξj , ηj , ζj ) +

∑
i

q2
i Q222(a, b, c)

]
. (67)

For charges of equal magnitude q arranged in a Bravais lattice, all atomic positions are of
equivalent symmetry. The Madelung constant is obtained by dividing E by the electrostatic
energy of a pair of neighbouring positive and negative charges separated by distance L:

Z = − L

q2
E. (68)

4. Numerical results

4.1. Two-dimensional periodic Green function

The difference in the speed of convergence of the logarithmic series in the two equivalent forms
of P22 can be demonstrated by evaluating them for (x, y) = (1, 1) and (ξ, η) = (1.5, 1.5) in
a rectangle with a = 15 and b = 4. An estimate of the value of M required to reduce the
leading term of the series in equation (31a) to ε can be obtained from the formula

Mmax = 1

b

(
|y − η| − a

2π
ln
ε

2

)
. (69)

The terms in the series of equation (31a) are as follows:

P2 ( 1.0000| 1.5000) = 0.1145833
Mmax = 10
M = 10 ln( 0.9999999) = -0.5960464E-07
M =- 10 ln( 0.9999999) = -0.1192093E-06
M = 9 ln( 0.9999995) = -0.4768373E-06
M =- 9 ln( 0.9999993) = -0.6556513E-06
....
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M = 2 ln( 0.9451995) = -0.5635927E-01
M =- 2 ln( 0.9173283) = -0.8628986E-01
M = 1 ln( 0.7260185) = -0.3201798E+00
M =- 1 ln( 0.6017119) = -0.5079766E+00
M = 0 ln( 0.0711527) = -0.2642928E+01
H (15.0000, 4.0000,-0.5000,-0.5000) = 8.7044292

P2 ( 1.0000| 1.5000)/15.0000 = 0.0076389
H (15.0000, 4.0000, 1.0000, 1.0000)*2/60.0000 = 0.2901476
P22( 1.0000, 1.0000| 1.5000, 1.5000) = 0.2977865

The output resulting from use of equation (31b) is:

P2 ( 1.0000| 1.5000) = 1.0083333
Mmax = 0
M = 0 ln( 0.5630857) = -0.5743235E+00
H ( 4.0000,15.0000,-0.5000,-0.5000) = 1.3710963

P2 ( 1.0000| 1.5000)/ 4.0000 = 0.2520833
H (15.0000, 4.0000, 1.0000, 1.0000)*2/60.0000 = 0.0457032
P22( 1.0000, 1.0000| 1.5000, 1.5000) = 0.2977865

which confirms that P22 can be evaluated very efficiently and that the two representations of
this function are indeed equivalent.

4.2. Three-dimensional periodic Green function: K0 expansion

The highest value of k that is expected to contribute to the Fourier series of modified Bessel
functions in P222 can be related to the summation tolerance ε by use of the formula

kmax = −c ln ε

2π
√
(x − ξ)2 + (y − η)2

(70)

which is obtained by setting M = N = 0 in the square root term and approximating K0

by a simple exponential of its argument. Of course, such an approximation overestimates
the number of terms required, since the K0 function decreases slightly faster with increasing
argument:

K0(z) ∼
√
π

2z
e−z. (71)

This method is less convenient for determining the highest values of N and M required,
because the arguments of the remaining K0 functions depend on a and b as well as the field
and source point coordinates. The summation over N for given values of k and M can be
carried out by evaluating the K0 function only for arguments such that the value of the K0

function is larger than the error involved in the approximation. For example, the polynomial
approximation given by Abramowitz and Stegun (1964, p 378) is stated to have a maximum
error of 1.9 × 10−7, which corresponds to an argument of about 14.3. The double summation
is then formed by evaluating the sum over N forM = 0,±1,±2, . . ..

The convergence rate of the series of K0 functions deteriorates markedly not only as the
field point approaches the source point, but more importantly if the x- and y-coordinates of
the source points are close. This limit can be dealt with by use of the Ewald-type expression
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for the K0 series derived in section 2.7, but more simply by observing that for a finite three-
dimensional region, P222 can be written in two other forms besides equation (47a):

P222(x, y, z | ξ, η, ζ ) = 1

a
P22(y, z | η, ζ )

+
1

πa

∞∑
n=1

{ ∞∑
K=−∞

∞∑
M=−∞

K0

[
2nπ

a

√
(Kc + z− ζ )2 + (Mb + y − η)2

] }

× cos
2nπ(x − ξ)

a
(47b)

and

P222(x, y, z | ξ, η, ζ ) = 1

b
P22(z, x | ζ, ξ)

+
1

πb

∞∑
m=1

{ ∞∑
N=−∞

∞∑
K=−∞

K0

[
2mπ

b

√
(Na + x − ξ)2 + (Kc + z− ζ )2

] }

× cos
2mπ(y − η)

b
. (47c)

For example, the value of P222(0, 0, 0 | 0, 0, 1/2) cannot be obtained from equation (47a),
but is obviously the same as P222(0, 0, 0 | 0, 1/2, 0) or P222(0, 0, 0 | 1/2, 0, 0), which can be
obtained without difficulty from equations (47b) and (47c), respectively. Since, in general, the
lengths of the projections of the vector (x − ξ, y − η, z − ζ ) on the planes z = 0, x = 0 and
y = 0 are

rxy =
√
(x − ξ)2 + (y − η)2 ryz =

√
(y − η)2 + (z− ζ )2

rxz =
√
(x − ξ)2 + (z− ζ )2 (72)

it follows by appropriate modifications of equation (70) that the fastest convergence is expected
with equations (47a), (47b) or (47c) depending on whether rxy , ryz or rxz is the greatest of
these three quantities, respectively. (The required number of Fourier series terms also depends
on the side lengths a, b and c, especially if these lengths are very different. Such a situation
is, however, unlikely to be of interest in molecular simulations.)

As an example, let us assume that a = b = c = 1 and calculate P222(0, 0, 0 |
1/2, 1/2, 1/2), for which equations (47a), (47b) and (47c) are all equivalent. The one- and
two-dimensional contributions and the K0 functions in the Fourier series are as follows:

One-dimensional function:
P2 ( 0.0000| 0.5000) = -0.041667

Two-dimensional function:
Mmax = 3
H ( 1.0000, 1.0000,-0.5000,-0.5000) = -0.006746
P22( 0.0000, 0.0000| 0.5000, 0.5000) = -0.055159
kmax = 3
k = 1 Double Sum = 0.2742429E-01
k = 2 Double Sum = 0.2295795E-03
k = 3 Double Sum = 0.2214305E-05

P222( 0.0000, 0.0000, 0.0000| 0.5000, 0.5000, 0.5000) = -0.063816
Number of K0 evaluations = 24.
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4.3. Three-dimensional periodic Green function: Ewald representation

It is of particular interest to repeat the above calculation with the Ewald method, in view of
Lekner’s (1991) statement that the Ewald summation requires about ten times as many terms
as the expansion in K0 functions. With a convergence parameter, β, equal to 0.072, the sums
of error functions corresponding to the first few values of K are

K = 0 Sum over M and N = 0.1038852
K = 1 Sum over M and N = 0.1038852
K =-1 Sum over M and N = 0.0000300
K = 2 Sum over M and N = 0.0000300
K =-2 Sum over M and N = 0.0000000
Sum over K = 0.2078303

and the terms in the exponential series are

K = 0 Sum over M and N = -0.0057329
K = 1 Sum over M and N = -0.0013109
K =-1 Sum over M and N = -0.0013109
K = 2 Sum over M and N = 0.0000001
K =-2 Sum over M and N = 0.0000001
Sum over K = -0.0083547

P222( 0.0000, 0.0000, 0.0000| 0.5000, 0.5000, 0.5000) = -0.063816
Number of erfc evaluations = 47
Number of exponential terms = 34.

The optimal value of β can be expected to depend on the field and source point coordinates; the
value of β = 0.072 was selected by trial and error, so that equal numbers of error function and
exponential terms are required in the evaluation of the self-potential term. The self-potential
term was chosen for optimizing β because it is the same for all charges in the enclosure,
irrespective of their positions, and needs to be evaluated only once in a simulation. The
required numbers of error function and exponential terms corresponding to various values of β
are presented in table 1, and show that 31 terms are required for a convergent estimate of each
series. For example, application of equation (57) gives, for the sum of the error functions,

K = 0 Sum over M and N = 0.0341813
K = 1 Sum over M and N = 0.0089684
K =-1 Sum over M and N = 0.0089684
K = 2 Sum over M and N = 0.0000001
K =-2 Sum over M and N = 0.0000001
Sum over K = 0.0521182.

For the exponential terms:

K = 0 Sum over M and N = 0.0060777
K = 1 Sum over M and N = 0.0016551
K =-1 Sum over M and N = 0.0016551
K = 2 Sum over M and N = 0.0000001
K =-2 Sum over M and N = 0.0000001
Sum over K = 0.0093881

Q222( 1.0000, 1.0000, 1.0000) = -0.225785
Number of erfc evaluations = 34
Number of exponential terms = 34.
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Table 1. Optimization of the convergence parameter, β. Nerf c and Nexp are the number of error
function and exponential terms required for convergence, respectively.

β Nerf c Nexp Total

0.060 25 66 91
0.070 34 42 76
0.071 34 34 68
0.072 34 34 68
0.073 34 34 68
0.074 42 34 76
0.075 42 34 76
0.080 42 34 76
0.090 58 26 84
0.100 66 26 92
0.110 90 25 115
0.120 90 25 115
0.130 90 25 115
0.140 98 21 119

The numerical values just calculated can be used to determine the Madelung constant for
CsCl. Since for this body-centred cubic structure, the distance L is equal to a

√
3/2, the

Madelung constant is found from application of equation (68) to be Z = 1.762 674, which
is in close agreement with the value determined by Lekner (1998): the discrepancy can with
confidence be attributed to the errors in the approximate expressions used to evaluate the K0

and erfc functions. The rate of convergence of equation (65) can be expected to be very similar,
considering that the asymptotic behaviour of E1(X

2) for large arguments X is similar to that
of erfc(X).

The calculations presented here show that the convergence acceleration achieved by use
of the PSF is extremely effective, and confirm that the K0 expansion and the Ewald sum
converge to the same numerical result. More importantly, they show that the K0 expansion is
considerably more efficient than the Ewald sum, requiring fewer than a third as many terms
for a convergent estimate. Although this difference in rate of convergence is not nearly as
great as that claimed by Lekner (1991), use of theK0 expansion in place of Ewald summation
could reduce substantially the amount of computation involved in simulation of polar or ionic
fluids, assuming that the computational overhead associated with evaluation of the Bessel
functions and complementary error functions is comparable. In the present work, these
functions were both evaluated by the polynomial-based approximants given by Abramowitz
and Stegun (1964); the approximation for K0 is slightly more complicated (since it involves
evaluation of I0 as well). There is undoubtedly much room for improvement in the calculation
of these functions, but comparison of the various methods is beyond the scope of the present
paper. One possible improvement involves use of the Fourier integral representation of K0

to construct an approximation based on the continued-fraction method recently described by
Marshall (1998b).

5. Direct summation of Coulomb potentials

In the previous section the performances of the representations of the Green function as a
Ewald sum and a Bessel function expansion were compared. Another comparison of interest
is between the values of lattice sums determined by use of the Green function and those obtained
by application of the PSF to summation of the Coulomb potentials. The potential at the point
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(x, y, z) due to a unit positive charge at (x1, y1, z1) and a unit negative charge at (x2, y2, z2),
assumed to be infinitely repeated in three dimensions, is

S =
∞∑

n=−∞

∞∑
m=−∞

∞∑
k=−∞


 1√

ρ2
1 + (kc + z− z1)2

− 1√
ρ2

2 + (kc + z− z2)2


 (73)

where

ρ2
1,2 = (na + x − x1,2)

2 + (mb + y − y1,2)
2.

As observed by Chaba and Pathria (1976a), the three-dimensional PSF cannot be applied to
this series, but application of the one-dimensional PSF to the sum over k gives

∞∑
n=−∞

∞∑
m=−∞

∞∑
k=−∞


 1√

ρ2
1 + (kc + z− z1)2

− 1√
ρ2

2 + (kc + z− z2)2




= F(0) + 2
∞∑
K=1

F(2Kπ) (74)

where for K > 0,

F(2Kπ) =
∫ ∞

−∞


 1√

ρ2
1 + (tc + z− z1)2

− 1√
ρ2

2 + (tc + z− z2)2


 cos(2Kπt) dt

= 2

c

{
cos

2Kπ(z− z1)

c
K0

(
2Kπρ1

c

)
− cos

2Kπ(z− z2)

c
K0

(
2Kπρ2

c

)}
(75)

(Erdélyi et al 1954, p 11, formula (7)) and

F(0) =
∫ ∞

−∞


 1√

ρ2
1 + (tc + z− z1)2

− 1√
ρ2

2 + (tc + z− z2)2


 dt = 2

c
ln
ρ2

ρ1
. (76)

The sum over k is therefore

∞∑
k=−∞


 1√

ρ2
1 + (kc + z− z1)2

− 1√
ρ2

2 + (kc + z− z2)2


 = 1

c
ln
ρ2

2

ρ2
1

+
4

c

∞∑
K=1

{
cos

2Kπ(z− z1)

c
K0

(
2Kπρ1

c

)

− cos
2Kπ(z− z2)

c
K0

(
2Kπρ2

c

) }
. (77)

This series can be expected to converge rapidly when summed with respect to n andm as well
as K; to proceed further it is necessary to develop a rapidly converging representation of the
sum of logarithmic terms. Application of the theory of residues (as described in the appendix)
leads to the result

∞∑
n=−∞

ln
(n + α2)

2 + β2
2

(n + α1)2 + β2
1

= ln
cosh 2πβ2 − cos 2πα2

cosh 2πβ1 − cos 2πα1
= ln

cosh2 πβ2 − cos2 πα2

cosh2 πβ1 − cos2 πα1

= ln
sinh2 πβ2 + sin2 πα2

sinh2 πβ1 + sin2 πα1
(78)
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where

α1,2 = x − x1,2

a
β1,2 = mb + y − y1,2

a
.

The summation with respect to m can be carried out directly. The transformed lattice sum is
therefore

S = 1

c

∞∑
m=−∞

ln
cosh[2π(y − y2 +mb)/a] − cos[2π(x − x2)/a]

cosh[2π(y − y1 +mb)/a] − cos[2π(x − x1)/a]

+
4

c

∞∑
K=1

( ∞∑
n=−∞

∞∑
m=−∞

K0

[
2Kπ

c

√
(na + x − x1)2 + (mb + y − y1)2

] )

× cos
2Kπ(z− z1)

c

−4

c

∞∑
K=1

( ∞∑
n=−∞

∞∑
m=−∞

K0

[
2Kπ

c

√
(na + x − x2)2 + (mb + y − y2)2

] )

× cos
2Kπ(z− z2)

c
. (79)

The procedure by which the above expression for S was obtained is essentially equivalent
to Lekner’s (1991) method, but operated in reverse: Lekner summed the expressions for the
field components and obtained the potential by integration, adjusting the integration constants
to produce the correct values of Madelung constants. Alternatively, in terms of the Green
function, the potential within this lattice of charges is

V = 4π [P222(x, y, z | x1, y1, z1)− P222(x, y, z | x2, y2, z2)]

= 4π

c
[P22(x, y | x1, y1)− P22(x, y | x2, y2)]

+
4

c

∞∑
k=1

( ∞∑
N=−∞

∞∑
M=−∞

K0

[
2kπ

c

√
(Na + x − x1)2 + (Mb + y − y1)2

] )

× cos
2kπ(z− z1)

c

−4

c

∞∑
k=1

( ∞∑
N=−∞

∞∑
M=−∞

K0

[
2kπ

c

√
(Na + x − x2)2 + (Mb + y − y2)2

] )

× cos
2kπ(z− z2)

c
. (80)

The sums of K0 functions appearing here are identical to those in equation (47a), but the
relation between the remaining terms in equation (79) and the corresponding parts of the
Green function is less obvious. Taking into account the definition of the two-dimensional
Green function in equations (35a) and (40a), one obtains

4π

c
[P22(x, y | x1, y1)− P22(x, y | x2, y2)]

= 4π

c

[
P2(y | y1)− P2(y | y2)

+
1

4π

∞∑
M=−∞

ln
1 − 2e− 2π

a
|Mb+y−y2| cos[2π(x − x2)/a] + e− 4π

a
|Mb+y−y2|

1 − 2e− 2π
a

|Mb+y−y1| cos[2π(x − x1)/a] + e− 4π
a

|Mb+y−y1|

]
. (81)
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Assuming for the sake of definiteness that the quantities within the absolute value signs are
positive, and noting that

1 − 2e− 2π
a
(Mb+y−y2) cos

2π(x − x2)

a
+ e− 4π

a
(Mb+y−y2)

= 2e− 2π
a
(Mb+y−y2)

[
cosh

2π

a
(Mb + y − y2)− cos

2π(x − x2)

a

]
(82)

it follows that

1

c

∞∑
M=−∞

ln
1 − 2e− 2π

a
|Mb+y−y2| cos[2π(x − x2)/a] + e− 4π

a
|Mb+y−y1|

1 − 2e− 2π
a

|Mb+y−y1| cos[2π(x − x1)/a] + e− 4π
a

|Mb+y−y1|

= 2π(y2 − y1)

ac
+

1

c

∞∑
M=−∞

ln
cosh[2π(Mb + y − y2)/a] − cos[2π(x − x2)/a]

cosh[2π(Mb + y − y1)/a] − cos[2π(x − x1)/a]

(83)

which is to be compared with the second form of equation (78). The difference in the one-
dimensional Green functions is thus found to be

4π

ac
[P2(y | y1)− P2(y | y2)] = 2π

abc
(y2

1 − y2
2 )−

2π

ac
(y1 − y2) (84)

which, when inserted into equation (81), yields

V = S +
2π

abc
(y2

1 − y2
2 ). (85)

Thus, the potentials obtained from the Green function and summing over the lattice differ
by a constant that depends on the coordinates of the source points. From the mathematical
viewpoint, this difference can be understood as a consequence of the conditional convergence:
the numerical value obtained depends on the manner in which the positive and negative terms of
the individually divergent series are combined. For crystal lattice sums, Redlack and Grindlay
(1975) pointed out that Ewald sums and the direct addition of Coulomb potentials produce
different results for some crystal structures, notably the CsCl lattice, and De Leeuw et al
(1980) showed that a similar discrepancy arises when spherical shells of charges about a given
lattice point are summed. Equation (84) is clearly consistent with this observation, noting
the difference in the y coordinates of the Cs and Cl positions. Redlack and Grindlay (1975)
identified two components of the potential: a principal or intrinsic part (which they showed to
be identical to that given by Ewald’s method) and an extrinsic part, depending on the size and
shape of the lattice and equal to the difference between the Ewald potential and the direct sum of
Coulomb terms. The distinction resides in the uniform neutralizing charge that is implied in the
differential equation defining the Green function, but not in the direct summation methods—
interestingly, Lekner (1991) showed that this uniform neutralizing charge was also implied in
his results. Physically, the extrinsic potential depends on how the effects of the positive and
negative charges cancel out at the boundary, or in other words, on the normal component of
the dipole moment of the unit cell. In general, depolarization corrections must be applied to
direct potential sums in order to recover the intrinsic potentials. Euwema and Surratt (1975)
and Stuart (1978) showed how these corrections could be obtained from the second moment
tensor of the charge cluster used in direct summation methods.

6. Relation to Lekner’s results

The application of the Green function as described gives results that are, apart from minor
differences in notation and the selection of coordinate variables, equivalent to Lekner’s (1991,
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1998) formulae. But a more substantial difference appears to reside in the manner in which the
electrostatic energyE of the unit cell is calculated: Lekner (1998, equation (22)) expresses this
as a sum of pairwise electrostatic potentials, while equation (67) of the present work contains
contributions from single ions as well as pairs. The succinct explanation of this difference
is that Lekner’s electrostatic pair potential contains the self-energy terms that are written out
separately in equation (67); pairwise decomposition followed by electroneutrality (as expressed
by Lekner’s equation (20)). More importantly, Lekner’s electrostatic pair potential is given
as the difference between two divergent lattice sums, while the functions P222 and Q222 that
appear in equation (67) are both individually convergent. It is, however, of interest to consider
the relation between the two approaches in more detail. By doing so, it is not only possible to
prove that they are completely equivalent, but also to gain valuable insights into the physical
significance of the mathematical functions appearing in the present work and in Lekner’s
papers.

Lekner (1998, equation (11)) expresses E in terms of lattice sums S and T which give,
respectively, the potential experienced by one ion due to another ion and its infinite repetitions,
and the potential experienced by the ion due to its own infinite repetitions. Since S and T
are obviously infinite, they are obtained as limits of the corresponding lattice sums for the
screened Coulomb potential. By an ingenious but rather involved argument, Lekner showed
that these screened Coulomb lattice sums diverge as 1/s, where s1/2 is the screening constant,
and that the nonsingular part consists of one function that vanishes as s tends to zero, and
another function can be identified as the K0 expansion of the Green function obtained in the
present work. However, the reason why the Green function appears in this asymptotic result
can be understood much more easily by applying some of the ideas described in the work of
Chaba and Pathria (1976a) concerning the evaluation of lattice sums for the screened Coulomb
potential. Subtracting the k = m = n = 0 term (i.e., 1) from both sides of the Poisson–Jacobi
formula (equation (54)), and integrating from 0 to t with respect to t gives

−
∑′

k,m,n

e
−

[
( 2nπ

a )
2
+( 2mπ

b )
2
+( 2kπ

c )
2
]
t+i

[
2nπ(x−ξ)

a

2mπ(y−η)
b

+ 2kπ(z−ζ )
c

]

(2nπ/a)2 + (2mπ/b)2 + (2kπ/c)2
+ abcP222(x, y, z | ξ, η, ζ )

= abc

4π

∞∑
K=−∞

∞∑
M=−∞

∞∑
N=−∞

×erfc[
√
(x − ξ +Na)2 + (y − η +Mb)2 + (z− ζ +Kc)2/2

√
t]√

(x − ξ +Na)2 + (y − η +Mb)2 + (z− ζ +Kc)2
− t; (86)

the periodic Green function corresponds to the lower limit of the integral. Taking Laplace
transforms with respect to t with parameter s (Erdélyi et al 1954, p 133, formulae (1) and (3);
p 143, formula (1); p 177, formula (11)):

−
∑′

k,m,n

e
i
[

2nπ(x−ξ)
a

+ 2mπ(y−η)
b

+ 2kπ(z−ζ )
c

]

[(2nπ/a)2 + (2mπ/b)2 + (2kπ/c)2][s + (2nπ/a)2 + (2mπ/b)2 + (2kπ/c)2]

+
abc

s
P222(x, y, z | ξ, η, ζ ) = abc

4π

∞∑
K=−∞

∞∑
M=−∞

∞∑
N=−∞

× e−s1/2
√
(x−ξ+Na)2+(y−η+Mb)2+(z−ζ+Kc)2

s
√
(x − ξ +Na)2 + (y − η +Mb)2 + (z− ζ +Kc)2

− 1

s2
. (87)
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The required lattice sum follows after transposing terms and multiplying by 4πs/abc:

Ss =
∞∑

K=−∞

∞∑
M=−∞

∞∑
N=−∞

e−s1/2
√
(x−ξ+Na)2+(y−η+Mb)2+(z−ζ+Kc)2

s
√
(x − ξ +Na)2 + (y − η +Mb)2 + (z− ζ +Kc)2

= 4π

abcs
+ 4πP222(x, y, z | ξ, η, ζ )

−s
∑′

k,m,n

e
i
[

2nπ(x−ξ)
a

+ 2mπ(y−η)
b

+ 2kπ(z−ζ )
c

]
{[(2nπ/a)2 + (2mπ/b)2 + (2kπ/c)2]

×[s + (2nπ/a)2 + (2mπ/b)2 + (2kπ/c)2]}−1. (88)

The result for Ts follows by subtracting the free-space Green function (cf section 3.7):

Ts = 4π

abcs
+ 4πQ222(a, b, c) + O(s). (89)

Forming the electrostatic energy E from Lekner’s (1998) equation (11),

E =
∑
i<j

qiqjSs(ξi, ηi, ζi, ξj , ηj , ζj ) +
Ts

2

∑
i

q2
i

= 1

2

[
4π

abcs

( ∑
i

qi

)2

+ 4π
∑
i �=j
qiqjP222(ξi, ηi, ζi | ξj , ηj , ζj )

+4πQ222(a, b, c)
∑
i

q2
i + O(s)

]
(90)

and noting that the algebraic sum of charges is zero, equation (67) is obtained by taking the
limit as s tends to zero. Applying Lekner’s equation (20), this can clearly be written as

E =
∑
i<j

Vij where Vij = 4πq2[P222(ξi, ζi, ηi | ξj , ηj , ζj )−Q222(a, b, c)] (91)

is an effective ‘pairwise’ electrostatic potential (that in fact includes an infinite number of
contributions from repetitions of the unit cell). The essential difference between the present
work and Lekner’s is expressed by the first step in the above derivation, which corresponds
physically to the neutralization of the positive point charge by a uniform negative charge
density, thereby ensuring the convergence of P222 andQ222.

7. Conclusions

It has been shown in this paper that the intrinsic values of lattice sums for arbitrary periodic
charge distributions can be obtained by use of the periodic modified Green function for
Poisson’s equation. Computationally efficient representations of this function as expansions in
complementary error functions and K0 Bessel functions were derived from the triple Fourier
series by application of Ewald’s method, or the PSF, respectively. The application of these
formulae to simple ionic crystal lattices gives results equivalent to those recently derived by
Lekner (1991, 1998), but the Green function is more general, being applicable to both discrete
and continuous periodic charge distributions. The K0 function expansion is more efficient,
requiring about a third as many terms for convergent estimates as the Ewald sum. Depending on
the relative efficiency of the algorithms used in the evaluation ofK0 and complementary error
functions, use of the K0 expansion in place of the more usual Ewald summation could result
in reductions of more than 50% in the computational effort involved in computer simulations
of ionic/polar fluids.
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Appendix. Derivation of equation (78)

The evaluation of the series

T =
∞∑

m=−∞
ln
(m + α2)

2 + β2

(m + α1)2 + β2
(A1)

can be achieved by techniques similar to those used to establish the Mittag–Leffler expansion
and Weierstass factorization theorems (see Whittaker and Watson 1944, pp 134–9). To apply
these results it is convenient to consider first the function

S(ζ ) =
∞∑

m=−∞
ln
(m + α2)

2 + (βζ )2

(m + α1)2 + (βζ )2
(A2)

where ζ is a real parameter having values in the range [0, 1]. Termwise differentiation of S
with respect to ζ produces the series

S ′(ζ ) = 2β2ζ

∞∑
m=−∞

[
1

(m + α2)2 + (βζ )2
− 1

(m + α1)2 + (βζ )2

]
(A3)

which can be readily evaluated by standard techniques of residue theory. The result is
∞∑

m=−∞

1

(m + α)2 + (βζ )2
= π

βζ

sinh(πβζ ) cosh(πβζ )

cosh2(πβζ )− cos2 πα
(A4)

where α stands for either α1 or α2. But since

sinh(πβζ ) cosh(πβζ ) = 1

2βπ

∂

∂ζ
{cosh2(πβζ )} (A5)

the right-hand side of equation (A4) can be written

π

βζ

sinh(πβζ ) cosh(πβζ )

cosh2(πβζ )− cos2 πα
= 1

2β2ζ

∂

∂ζ
ln[cosh2(πβζ )− cos2(πα)] (A6)

so that
∂S

∂ζ
= ∂

∂ζ
ln[cosh2(βπζ )− cos2 πα2] − ∂

∂ζ
ln[cosh2(βπζ )− cos2 πα2]. (A7)
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Integration with respect to ζ from ζ = 0 to ζ = 1 now results in

S(1)− S(0) =
∞∑

m=−∞
ln
(m + α2)

2 + β2

(m + α1)2 + β2
−

∞∑
m=−∞

ln
(m + α2)

2

(m + α1)2

= ln
cosh2(βπζ )− cos2 πα2

cosh2(βπζ )− cos2 πα1
− ln

sin2 πα2

sin2 πα1
. (A8)

The second series on the left-hand side of equation (A8) can be evaluated as follows:
∞∑

m=−∞
ln
(m + α2)

2

(m + α1)2
= 2 ln

α2

α1
+ 2

∞∑
m=1

ln
m2 − α2

2

m2 − α2
1

= ln
sin2 πα2

sin2 πα1
(A9)

where use has been made of the infinite product

sin z

z
=

∞∏
m=1

[
1 −

( z

mπ

)2
]
. (A10)

With appropriate simplification, the final result is
∞∑

m=−∞
ln
(m + α2)

2 + β2

(m + α1)2 + β2
= ln

cosh2 πβ − cos2 πα2

cosh2 πβ − cos2 πα1
= ln

sinh2 πβ + sin2 πα2

sinh2 πβ + sin2 πα1
. (A11)
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